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Abstract. This paper considers the solution of nonconvex polynomial programming problems that
arise in various engineering design, network distribution, and location-allocation contexts. These
problems generally have nonconvex polynomial objective functions and constraints, involving terms
of mixed-sign coefficients (as in signomial geometric programs) that have rational exponents on
variables. For such problems, we develop an extension of the Reformulation-Linearization Technique
(RLT) to generate linear programming relaxations that are embedded within a branch-and-bound
algorithm. Suitable branching or partitioning strategies are designed for which convergence to a
global optimal solution is established. The procedure is illustrated using a numerical example, and
several possible extensions and algorithmic enhancements are discussed.
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1. Introduction

In this paper, we consider the global optimization of polynomial programming
problems of the following form.

PP(
): Minimize �0(x) (1a)

subject to �i(x) � �i for i = 1; . . . ;m (1b)

x 2 
 � fx : 0 � `j � xj � uj <1 8j 2 N � f1; . . . ; ngg; (1c)

where,

�i(x) =
X
t2Ti

�it

Y
j2Jit

x
itj
j for all i = 0; 1; . . . ;m: (1d)

Here, the objective function as well as each constraint is represented by a
polynomial �i(x) that is comprised of terms indexed by a set Ti, where each term
t 2 Ti has some real coefficient �it that may be of either sign, and is composed of
products of monomials x

itj
j for j belonging to some subsetJit ofN . The indices in

Jit are assumed to be distinct, each itj is assumed to be positive and rational, and
`j < uj 8j = 1; . . . ; n. For convenience in exposition, any equality constraint is
assumed to be treated here as an equivalent pair of oppositely restricted inequalities.
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268 HANIF D. SHERALI

Note that whenever any negative exponent terms involving some variable xj are
present in a constraint, we can multiply this constraint throughout by x

p
j , where

p is the greatest absolute value of the negative exponents appearing for xj in this
constraint, and repeat this for each variable in each constraint to cast the problem
into the form (1). (If negative exponent terms appear in the objective function, then
this can be handled by rewriting the problem as that of minimizing z, subject to
z � �0(x) in addition to (1b, 1c).) Alternatively, for any variable xj that appears
in the problem with a negative exponent, we can substitute yj = x�1

j in each
such negative exponent monomial, and include the constraint xjyj = 1 within the
problem in order to obtain an equivalent problem of the form (1). Although the
latter approach introduces additional variables in the problem, its advantage is that
it avoids the creation of several nonconvex product terms that the former method
might generate. However, by the nature of the proposed algorithm, both methods
are viable approaches that are open to further investigation.

Problems of the above type find a wide range of applications in production
planning, location, and distribution contexts (see Horst and Tuy, 1993) in risk
management problems (see Sherali et al., 1994), and in various chemical process
design (pooling and blending) and engineering design situations (see Duffin et
al. 1967, Dembo 1976, Peterson 1976, Floudas and Pardalos 1990, Floudas and
Visweswaran 1990, 1995, Lasdon et al. 1979, and Shor 1990).

In particular, specialized algorithms have been developed to globally optimize
Problem PP(
) when the exponents itj in (1d) are positive integers. In this case,
Floudas and Visweswaran (1990, 1995) employ a successive quadrification process
to convert this problem into an equivalent quadratic polynomial program (see also
Shor, 1990), and then develop an extended version of the generalized Benders’ algo-
rithm to handle the inherent nonconvexity in the problem. Al-Khayyal et al. (1994)
treat this same problem by further converting it to an equivalent bilinearly con-
strained bilinear program, for which convex envelope based linear programming
relaxations are generated that are embedded within a branch-and-bound algorithm.
Sherali and Tuncbilek (1992) have developed a Reformulation-Linearization Tech-
nique (RTL) for directly generating linear programming relaxations for the poly-
nomial program itself, and have designed globally convergent branch-and-bound
algorithms using these relaxations. The resulting relaxations have been shown to
theoretically dominate the relaxations that would be obtained by applying RLT to
an equivalent quadratic polynomial problem (see Sherali and Tuncbilek, 1997),
and moreover, the latter relaxations strictly subsume those of Al-Khayyal et al.
(1994) as well.

However, there are several applications in which Problem PP(
) arises wherein
the variable exponents in (1d) are rational, but non-integral. Examples of such
instances include water distribution network design problems (Sherali and Smith,
1995), location-allocation problems using more accurate, empirically determined,
`p distance measures (Brimberg and Love, 1991), several engineering design appli-
cations such as the design of heat exchangers and pressure vessels as described
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in Floudas and Pardalos (1990, Chapters 4, 7, and 11), as well as other design,
equilibrium, and economics problems that are typically modeled as geometric pro-
gramming problems (see Kortanek et al., 1995, and the references cited therein).
Although rational exponents can be theoretically intergerized through variable sub-
stitutions and suitable transformations, this approach can lead to several additional
variables and nonconvex constraints, as well as result in high-degree polynomial
terms, thereby exacerbating the complexity of the problem. Moreover, in sever-
al of the aforementioned applications, the rational exponents are frequently not
amenable to such transformations. For example, in the pipe network design prob-
lem solved by Sherali and Smith (1995), the pressure head-loss constraints contain
an exponent of 1.852 for the flow variables. It is therefore preferable to derive a
method that can directly handle such rational exponent terms.

Note also that Problem PP(
) has the form of signomial geometric program-
ming problems (see, for example, Dembo, 1978; Kortanek et al., 1995; and Rickaert
and Martens, 1978), except that the lower bounds on the variables are permit-
ted to be zero in PP(
), thereby excluding (theoretically) the use of logarith-
mic/exponential transformations employed in geometric programming where the
variables are restricted to be positive valued. Cole et al. (1980) consider such prob-
lems and transform them into a form that involves sets of posynomial and reversed
geometric constraints. An approximating linear program in the logarithm of the
variables is then developed by generating tangential hypersurfaces to the posyn-
omial constraints and single-term approximating polynomial constraints to the
reversed geometric constraint. The RLT approach we employ also generates linear
programming relaxations (in a higher dimensional space that includes the original
variables), but via a very different process that attempts to approximate the convex
hull of feasible solutions, where the objective function is conceptually accommo-
dated within the constraint set. Cole et al. (1985) have also developed primal and
dual cutting plane procedures for the special case of posynomial geometric pro-
gramming problems. Another successive convex programming branch-and-bound
approach has been developed by Passy (1978) for nonconvex problems defined
via upper level sets of sums of quasi-concave functions, including signomial geo-
metric programs that can be thus represented. More recently, Maranas and Floudas
(1994) have proposed a branch-and-bound algorithm for signomial geometric pro-
grams based on using the exponential transformation along with convex envelope
approximations for the nonconvex terms in order to generate convex programming
approximations. Comparison of the relaxations thus produced with those generat-
ed by an RLT approach are presented in Sherali and Tuncbilek (1996), where the
latter is empirically demonstrated to yield significantly tighter bounds. Aside from
such algorithms developed for geometric programs, other possible approaches for
solving PP(
) are based on the use of interval arithmetic (see Hansen et al. 1993)
or homotopy methods (see Watson et al., 1987, and Kostreva and Kinard, 1991).
However, these latter approaches require the determination of all solutions to the
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Fritz John necessary optimality conditions in order to recover a global optimum,
which can be an arduous task.

The method proposed in this paper to globally solve Problem PP(
) is based
on an extension of the RLT approach of Sherali and Tuncbilek (1992) to handle
rational exponents. Similar to the latter approach, a branch-and-bound algorithm
is developed that solves a sequence of relaxations over partitioned subsets of 

in order to find a global optimum solution. However, to generate the relaxation
for each node subproblem, an additional initial step is introduced that constructs
an approximating polynomial program having integer exponents to which RLT
is subsequently applied. Furthermore, in order to ensure convergence to a global
optimum, special partitioning procedures are proposed to coordinate the two levels
of relaxations that are involved in this scheme. This gives the basic structure of the
algorithm to which several expedients and reduction or bound tightening strategies
can be applied as discussed in order to enhance the solution procedure.

The remainder of this paper is organized as follows. Section 2 presents the RLT
scheme for generating the relaxations and Section 3 describes the proposed branch-
and-bound algorithm in which these relaxations are embedded, and establishes its
convergence. The procedure is illustrated in Section 4 using a numerical example,
and Section 5 provides a summary along with some possible extensions.

2. A reformulation-linearization technique for generating relaxations

The principal construct in the development of a solution procedure for solving
Problem PP(
) is the construction of a linear programming relaxation for obtaining
lower bounds for this problem, as well as for its partitioned subproblems. For
convenience in exposition, let us assume for now that 
 represents either the initial
bounds on the variables of the problem, or modified bounds as defined for some
partitioned subproblem in a branch-and-bound scheme. The proposed strategy
for generating this linear programming relaxation is to apply the Reformulation-
Linearization Technique (RLT) of Sherali and Tuncbilek (1992) with an additional
initial step that generates an approximating polynomial program having integer
variable exponents.

Toward this end, let us define the fractional part of each exponent itj by fitj ,
where,

itj = bitjc+ fitj ; 0 � fitj < 1 8i = 0; 1; . . . ;m;

t 2 Ti; and j 2 Jit: (2)

Accordingly, let us denote

J+it = fj 2 Jit : fitj > 0g 8i; t: (3)

Furthermore, letC
(�) denote the convex envelope of (�) over the hyperrectangle


(see, for example, Horst and Tuy, 1993). In particular, for each j 2 J+it , letC
(x
fitj
j )
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Figure 1. Bounding affine approximations for x
fitj
j .

represent the (affine) convex envelope of xfitjj over the interval `j � xj � uj . This
function is given by (see Figure 1)

C
(x
fitj
j ) = `

fitj
j +

(xj � `j)

(uj � `j)

h
u
fitj
j � `

fitj
j

i
: (4)

Additionally, for each j 2 J+it , let �xitj be some point in the (open) interval (`j ; uj);

Lemma 1 later prescribes a selection of this point. Then, by the concavity of xfitjj ,
we have (see Figure 1),

C
(x
fitj
j ) � x

fitj
j � �x

fitj
j + [fitj�x

(fitj�1)
itj ](xj � �xitj): (5)

Consequently, from (2) and (5), we have,

x
bitjc
j C
(x

fitj
j ) � x

itj
j � x

bitjc
j

n
�x
fitj
itj +

h
fitj �x

(fitj�1)
itj

i
(xj � �xitj)

o

for all j 2 J+it ; 8i; t: (6)

Letting 
j � fxj : `j � xj � ujg, and denoting g

j

itj (xj) and h

j

itj(xj) as,
respectively, the lower and upper bounding polynomial functions in (6), each of
which have integral exponents, we have,

�it

Y
j2Jit

x
itj
j � �

R(
)
it (x) �

8>>><
>>>:

�it

Y
j2Jit

g

j

itj (xj) if �it > 0

�it

Y
j2Jit

h

j

itj(xj) if �it < 0
8i; t; (7)

where we have used the fact that g
j

itj (xj) = h

j

itj(xj) = x
itj
j whenever itj

is integral, i.e., fitj = 0, or j 2 Jit � J+it . Hence, summing (7) over all the
terms t 2 Ti for each i = 0; 1; . . . ;m, and denoting the resulting right-hand sideP

t2Ti
�
R(
)
it (x) in this sum as �R(
)i (x), we have,

�i(x) � �
R(
)
i (x) 8x 2 
; i = 0; 1; . . . ;m: (8)
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Accordingly, we construct the corresponding approximation polynomial program-
ming relaxation PPR(
) as follows.

PPR(
): Minimizef�R(
)0 (x) : �
R(
)
i (x) � �i

8i = 1; . . . ;m; x 2 
g: (9)

REMARK 1. The fact that PPR(
) provides a lower bounding relaxation for Prob-
lem PP(
) follows directly from (8). Moreover, PPR(
) has integer exponents for
all the variables, and from (6) and (7), we note that the degree � of this problem,
defined as the highest degree of any polynomial term in this problem, is given by
the degree of the polynomial program that would be obtained by rounding up all
fractional exponents in (1d).

Before proceeding further, let us address the selection of �xitj in (5) for constructing
the approximating polynomial program (9). The following lemma motivates this
choice (see Figure 1).

LEMMA 1. Consider the univariate function f(x) = x� for 0 � ` � x � u <1,
where ` < u and 0 < � < 1. Define r = (u� � `�)=(u � `). Then, the point �x
at which the tangential supporting function for f yields the minimum value of the
maximum discrepancy between f and this affine tangential support over `� x � u,
is given by

�x =

�
�

r

�1=(1��)

: (10)

Moreover, this point �x also corresponds to the point of maximum discrepancy
between f and the convex envelope of f over ` � x � u.

Proof. Consider the point �x� at which the tangential supporting function yields
the same discrepancy �, say, at both the endpoints ` and u with respect to the
given function f . By the concavity of f , since the maximum discrepancy with
respect to any tangential support will occur at ` or u, and since for �x > �x�, the
discrepancy at x = ` will exceed �, and similarly, for �x < �x�, the discrepancy at
x = u will exceed �, the desired point of tangential support that would minimize
the maximum discrepancy is given by �x�. At this point �x = �x�, we have,

[f(�x) + (`� �x)f 0(�x)]� f(`) = [f(�x) + (u� �x)f 0(�x)]� f(u)

i.e., f 0(�x) = [f(u)�f(`)]=(u�`) � r as defined by the lemma. Hence,��x��1 =
r or �x = (�=r)1=(1��) . Moreover, by (4), since the difference between f and its
complex envelope over ` � x � u is given by f(x)� [f(`) +r(x � `)], by the
concavity of f , this difference is maximized at the point where f 0(x) = r, i.e., at
�x given by (10). This completes the proof. E
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REMARK 2. In accordance with Lemma 1, we select

�xitj =

2
4 fitj(uj � `j)

(u
fitj
j � `

fitj
j )

3
5

1=(1�fitj)

8i; t; and j 2 J+it : (11)

We also comment here that while only one point of tangential support has been
suggested in our derivation, some special applications might permit the use of more
than one tangential approximating constraint. (In general, such a strategy could
result in a combinatorial population of constraints.) For example, in the water
distribution network design model described in Sherali and Smith (1995), each
polynomial constraint involves only a single variable having a rational exponent
for which the tangential supporting approximation is necessary in constructing
PPR, and in this instance, additional supports can be generated to obtain a tighter
relaxation PPR in (9), while maintaining a manageable number of constraints.
Furthermore, in the spirit of (5) and (6), various bounding functions can be devised
for the monomials xitjj ; j 2 J+it 8(i; t), and can be suitably coordinated with a
partitioning strategy as introduced in the sequel, in order to induce convergence.
For example, denoting C
(�) as the concave envelope, over 
, we can use

h

j

itj(xj) = x
bitj�1c
j C


�
xfitj�bitj�1cg

�
8j 2 J+it 3 itj > 1; 8(i; t);

as an upper bounding approximation, where C
 is an affine function in this case.
This type of an approximation was used in lieu of (6) in the application described by
Sherali and Smith (1995), and yielded comparatively favorable results. In general,
one might expect this to be the case when the polynomial expressions in the
objective or constraint functions have terms that involve dissimilar variables.

Before proceeding, we establish another property related to the function addressed
in Lemma 1 that will be useful in composing partitioning strategies for our branch-
and-bound algorithm.

LEMMA 2. Consider the univariate function f(x) = x� for 0 � ` � x � u <1,
where ` < u and 0 < � < 1. Suppose that starting with [`1; u1] � [`; u], for each
k � 1, we determine �xk via (10) for ` � `k and u � uk, and we let [`k+1; uk+1]
be given by either of the partitioned subintervals [`k; �xk] or [�xk; uk]. Then, the
sequence of intervals f[`k; uk]g thus generated tends to [`�; u�] where `� = u� as
k !1.

Proof. Since each sequence f`kg and fukg is monotone and bounded, we
have that f[`k; uk]g converges to some interval [`�; u�], where `� � u�. Now, on
the contrary, assume that `� < u�. Then, by (10), since �xk = [�(uk � `k)=(u

�
k �

`�k )]
1=(1��) , we have that f�xkg ! �x� where �x� = [�(u��`�)=(u���`��)]1=(1��) .

By the strict concavity of f and the Mean Value Theorem, we known that �x� 2
(`�; u�) while �xk 62 (`k0 ; uk0) 8k

0 > k. This means that we must have �x� = `� or
u�, a contradiction. This completes the proof. E
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We now present the proposed RLT scheme for generating linear programming
relaxations for Problem PP(
). This scheme operates in two phases. In the first
phase, which is the Reformulation phase, the relaxed polynomial program PPR(
)
is constructed, and additional implied inequalities are generated and added to
this problem. The second phase is known as the Linearization phase, in which
the resulting problem is transformed into a linear program by substituting a single
variable for each distinct variable-product term. Specific details of these two phases
are described below.

Reformulation phase
Step I: Given PP(
), generate the relaxed polynomial program PPR(
) given by
(9) as described above. Let � denote the degree of PPR(
) (see Remark 1).
Step II: Let �N = fN; . . . ; Ng denote � replicates of N . Compose all possible
distinct constraints of the type

F�(J1; J2) �
Y
j2J1

(xj � `j)
Y
j2J2

(uj � xj) � 0

8J1 [ J2 � �N; jJ1 [ J2j = �; (12)

obtained by taking products of the bounding factors (xj � `j) � 0 and (uj �
xj) � 0 � at a time, including possible repetitions. (Here, J1 [ J2 denotes the joint
collection of indices within J1 and J2, preserving repetitions.) Augment Problem
PPR(
) by adding these constraints (12) to it. (In addition, optionally, other implied
polynomial constraints of degree less than or equal to � can be generated by
taking suitable inter-products involving the joint collection of constraint factors
�i��

R(
)
i (x) � 0; i = 1; . . . ;m, and the aforementioned bound factors, and these

can be added to PPR(
) in order to further tighten the relaxation obtained via this
overall RLT process.)

Linearization phase
Linearize the resulting polynomial program obtained at the end of the Reformula-
tion Phase by substituting

XJ =
Y
j2J

xj 8J � �N; (13)

where the indices in J are assumed to be sequenced in nondecreasing order, and
where Xfjg � xj 8j 2 N , and X� � 1. Denote the resulting linear program thus
produced by LP(
).

The following results establish some salient properties of Problem LP(
) that
are essential in designing the proposed algorithm. Notationally, for any Problem
P , let us denote the optimal objective function value of P by �(P).

LEMMA 3. �[LP(
)] � �[PP(
)], and so, LP(
) provides a lower bound on the
polynomial program PP(
).
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Proof. Obvious by construction. E

LEMMA 4. Let (x̂; X̂) be any feasible solution to LP(
). Suppose that x̂p = `p

for some p 2 N . Then X̂J[p = `pX̂J 8J � �N; 1 � jJ j � ��1. Similarly, x̂p = up

implies that X̂J[p = upX̂J 8J � �N; 1 � jJ j � � � 1.
Proof. See Sherali and Tuncbilek (1992). E

3. A branch-and-bound algorithm

The proposed algorithm is a branch-and-bound approach that is based on parti-
tioning the set 
 into sub-hyperrectangles, each associated with a node of the
branch-and-bound tree. Hence, at any stage s of the algorithm, suppose that we
have a collection of active nodes indexed by q 2 Qs, say, each associated with a
hyperrectangle 
q � 
; 8q 2 Qs. For each such node, we will have computed
a lower bound LBq via the solution of the linear program LP(
q) (see Lemma
3), so that the lower bound on PP(
) at stage s is given by LB(s) = minimum
fLBq : q 2 Qsg. Whenever the lower bounding solution (or some perturbation
thereof) for any node subproblem turns out to be feasible to PP(
), we update the
upper bound or incumbent solution value ��, if necessary. Hence, the active nodes
all satisfy LBq < �� 8q 2 Qs, for each stage s. We now select an active node
q(s) that yields the least lower bound LB(s) � LBq(s) among q 2 Qs, and we
partition its associated hyperrectangle into two sub-hyperrectangles as described
below, computing the lower bounds for each new node as before. Upon fathoming
any nonimproving nodes, we obtain a collection of active nodes for the next stage,
and this process is repeated until convergence is obtained.

The critical element in guaranteeing convergence to a global minimum is the
choice of a suitable partitioning strategy. Three such branching rules that assure
convergence for the proposed algorithm are stated below. The first of these (Rule
(A)) is a simple, standard bisection rule. While this is sufficient to ensure conver-
gence since it drives all the intervals to zero for the variables that are associated
with the term that yields the greatest discrepancy in the employed approximation
along any infinite branch of the branch-and-bound tree, it is not too cognizant of the
nature and solution of the employed relaxations. Rule (B) below accordingly sug-
gests branching at the value �xitj given by (11) whenever the approximating problem
employs the tangential approximation at this point for the term under consideration,
motivated by Lemmas 1 and 2 and the fact that the tangential approximation is
exact at this point. Likewise, Rule (C) is further oriented toward computational
effectiveness by combining Rule (B) with a partitioning at the linear programming
relaxation value whenever admissible, since as motivated by Lemma 4, the RLT
approximation involving any variable becomes exact (in the sense stated in the
Lemma) whenever this variable coincides with one of its bounds. Hence, by letting
the current linear programing relaxation value become an upper interval bound on
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one partitioned subnode and a lower interval bound on the other, we encourage
the tightening of the resulting relaxations. Further motivation is provided with the
detailed statement given below.

Branching rules
Consider any node subproblem identified by the hyperrectangle 
0 � 
, and
let (x̂; X̂) represent the solution obtained for its associated linear programming
relaxation LP(
0). Determine the term (r; �) in the polynomial program for which
the discrepancy between its value computed at x̂ and the value of its lower bounding
function �

R(
0
)

r� (x) given by (7) and linearized under (13) in LP(
0), computed
at (x̂; X̂), is a maximum. Letting �Lr� (x̂; X̂) denote the latter linearized value, we
have that

�r�

Y
j2Jr�

x̂
r�j
j � �L(


0
)

r� (x̂; X̂)

= maximum
i=0;...;m;t2Ti

8<
:�it

Y
j2Jit

x̂
itj
j � �

L(
0
)

it (x̂; X̂)

9=
; : (14)

The selection of the branching variable xp and the partitioning of 
0 is then done
using one of the following rules, where 
0 � fx : `0j � xj � u0j 8j 2 Ng.

Rule (A). Let p = argmaxfu0j � `0j : j 2 Jr�g, and partition 
0 by bisecting the
interval [`0p; u

0
p] into the subintervals [`0p; (`

0
p + u0p)=2] and [(`0p + u0p)=2; u0p].

Rule (B). Let p = argmaxfu0j � `0j : j 2 Jr�g. Motivated by Lemma 1, partition

0 by subdividing the interval [`0p; u

0
p] into [`0p; �xr�p] and [�xr�p; u

0
p] if fr�p > 0,

where �xr�p is given by (11) for the current bounds on xp, and by bisecting [`0p; u
0
p]

if fr�p = 0. Alternatively, motivated by (7), this rule can be modified so that it is
applied when �r� < 0, with the bisection rule being used if �r� > 0.)

Rule (C). For each j 2 Jr� compute

�j = minfx̂j � `0j ; u
0

j � x̂jg and let ~xj = x̂j ; if �r� > 0

or if �r� < 0 and fr�j = 0; (15a)

and compute

�j = maxfjx̂j � �xr�jj; minfx̂j � `0j; u
0

j � x̂jgg

and let ~xj = �xr�j; otherwise: (15b)

Note that in the case of (15a), we have used the left inequality in (6) for the
approximation (7), and this inequality holds as an equality in case x̂j equals `0j or

u0j , and moreover, by Lemma 4, x̂jX̂J � X̂J[j 8J in this case. On the other hand,
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for the case of (15b) where�r� < 0 and fr�j > 0, we have used the right inequality
in (6) for the approximation (7), and we would like x̂j to coincide with �xr�j to
make this hold as an equality, but as in lemma 4, we would also like x̂j to be close
to `0j or u0j . Hence, with this motivation of �j , in conjunction with our desire of
reducing bounding interval lengths, we select p = argmaxf(u0j � `0j)�j : j 2 Jr�g,
and we partition 
0 by subdividing the interval [`0p; u

0
p] into [`0p; ~xp] and [~xp; u

0
p].

Algorithmic statement
Step 0: Initialization. In the notation used above, initialize by setting x� = ;; �� =
1; s = 1; Qs = f1g; q(s) = 1, and 
1 = 
. Solve LP(
1) and let (x̂; X̂)
be the solution obtained of objective value LB1 = �[LP(
1)]. If x̂ is feasible to
PP(
1) (perhaps after using some heuristic perturbation or some Newton–Raphson
iterations) update x� and ��, if necessary. If �� � LB1 + ", where " � 0 is
some accuracy tolerance, then stop with x� as the prescribed solution to Problem
PP(
1). Otherwise, select a branching variable xp according to any one of the
above branching rules (A), (B), or (C) and proceed to Step 1.
Step 1: Partitioning step. Partition 
q(s) into two sub-hyperrectangles by splitting
the interval for xp according to the selected branching rule. Replace q(s) by these
two new node indices in Qs.
Step 2: Bounding step. Solve the RLT linear programming relaxation for each of
the two new nodes generated, and update the incumbent solution if possible, as in
the Initialization Step.
Step 3: Fathoming step. Fathom any nonimproving nodes by setting Qs+1 =
Qs � fq 2 Qs : LBq + " � ��g. If Qs+1 = ; then stop. Otherwise, increment s
by one and proceed to Step 4.
Step 4: Node selection step. Select an active node q(s) 2 argmin fLBq : q 2 Qsg,
and return to Step 1.

THEOREM 1 (Convergence result). The above algorithm (run with � � 0) either
terminates finitely with the incumbent solution being optimal to PP(
), or else
an infinite sequence of stages is generated such that along any infinite branch
of the branch-and-bound tree, any accumulation point of the x-variable part of
the linear programming relaxation solutions generated for the node subproblems
solves PP(
).

Proof. The case of finite termination is clear. Hence, suppose that an infinite
sequence of stages is generated. Consider any infinite branch of the branch-and-
bound tree associated with a nested sequence of partitions f
q(s)g for stages s in
some index set S. Hence,

�[PP(
)] � LB(s) = LBq(s) � �[LP(
q(s))]

�
X
t2T0

�
L(
q(s)

)

0t (xq(s);Xq(s)) 8s 2 S; (16)
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where, for each node q(s); s 2 S; (xq(s);Xq(s)) denotes the optimum solution
obtained for LP(
q(s)). Moreover, let `q(s), and uq(s) be the associated vectors of
lower and upper bounds that define
q(s). By taking any convergent subsequence if
necessary, suppose that fxq(s);Xq(s); `q(s); uq(s)gS ! (x�;X�; `�; u�), and denote

� = fx : `� � x � u�g. We must show that x� then solves Problem PP(
).

Now, over the infinite sequence of nodes fq(s); s 2 Sg, there exists a term
(r; �) for � 2 Tr; r 2 f0; 1; . . . ;mg, that is picked infinitely often via (14). Let
S1 � S be the stages for which a partitioning is done based on this term (r; �)
using Branching Rule (A), (B), or (C). Hence, we have from (14) that,

�r�

Y
j2Jrt

[x
q(s)
j ]r�j � �L(


q(s)
)

r� (xq(s);Xq(s))

� �it

Y
j2Jit

[x
q(s)
j ]itj � �

L(
q(s)
)

it (xq(s);Xq(s)) (17)

8i = 0; 1; . . . ;m; t 2 Ti; for each s 2 S1:

Let us consider each branching rule in turn.
Rule A: Under this rule, since the largest interval for xj; j 2 Jr� , is bisected

at each node q(s); s 2 S1, we have that l�j = u�j 8j 2 Jr� , and so, x�j = `�j =
u�j 8j 2 Jr� . But by (7) and Lemma 4, this means that

�r�

Y
j2Jr�

(x�j)
r�j = �R(


�
)

r� (x�) = �L(

�
)

r� (x�;X�); (18a)

where

�R(

�
)

r� (x�) � lim
s!1;s2S1

�R(

q(s)

)

r� (xq(s)) and

�L(

�
)

r� (x�;X�) � lim
s!1;s2S1

�L(

q(s)

)

r� (xq(s);Xq(s)): (18b)

Hence, the left-hand side in (17) approaches zero as s ! 1; s 2 S1, and so, the
right-hand side in (17) is nonpositive in the limit. But this means that by taking
limits in (17) as s ! 1; s 2 S1, and by the feasibility of (xq(s);Xq(s)) for
LP(
q(s)), we have, ` � l� � x� � u� � u and

�i �
X
t2Ti

�
L(
�

)

it (x�;X�) �
X
i2Ti

�it

Y
j2Jit

(x�j)
itj 8i = 1; . . . ;m; (19a)

where as before,

�
L(
�

)

it (x�;X�) � lim
s!1;s2S1

�
L(
q(s)

)

it (xq(s);Xq(s)) 8(i; t): (19b)

Hence, x� is feasible to PP(
). Moreover, by (16) and (17) for i = 0, taking
limits as S !1; s 2 S1, we get

�[PP(
)] �
X
t2T0

�
L(
�

)

0t (x�;X�) �
X
t2T0

�0t

Y
j2J0t

(x�j )
0tj � �0(x

�): (20)
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Consequently, �0(x
�) must equal �[PP(
)], and hence x� solves PP(
).

Rule B: To establish convergence under this rule, using the argument for Rule
A, it is sufficient to show that l�j = u�j 8j 2 Jr� . Since at each step, the largest
interval for j 2 Jr� is selected for partitioning, and each such interval is either
bisected or is partitioned at the corresponding �xr�j value, by Lemma 2, it readily
follows that l�j = u�j 8j 2 Jr� . Hence again, the proof holds true in this case.

Rule C: Following the proof for Rule A, it is sufficient to show that the discrep-
ancy in the term (r; �) approaches zero as s!1; s 2 S1, i.e., Equation (18) holds
true. By the partitioning strategy, over the nested sequence of nodesfq(s); s 2 S1g,
there exists some index p 2 Jr� that is selected infinitely often for partitioning
according to

�p(u
0

p � `0p) � �j(u
0

j � `0j) 8j 2 Jr� : (21)

Let S2 � S1 index the set of nodes where this occurs, and let us consider two cases.
Case (i): �p is given by (15a). In this case, by (15a) and Rule C, since for each

s 2 S2; ~xp � x
q(s)
p 62 (`

q(s0)
p ; u

q(s0)
p ) 8s0 2 S2; s

0 > s, while x�p 2 [`�p; u
�
p], we

must have that x�p = `�p or x�p = u�p. Hence, the sequence of values f�pg ! 0 as
s ! 1; s 2 S2, and so by (21), either fu0j � `0jg ! 0 or f�jg ! 0 8j 2 Jr� .
But this means that if j 2 Jr� is of the case (15a), then as above, x�j = `�j or
x�j = u�j , and if it is of the case (15b), then we again have x�j = `�j = u�j .
Consequently, (7) holds as an equality in the limit, and by Lemma 4, we also have
�
R(
�

)

r� (x�) = �
L(
�

)

r� (x�;X�), and so, (18) holds true.
Case (ii): �p is given by (15b). In this case, since for each s 2 S2, the point ~xp is

selected as the corresponding point �xr�p, we have as in Lemma 2 that x�p = `�p = u�p
in the limit as s!1; s 2 S2. Hence, the sequence f�pg ! 0, and so by (21), we
again have that f(u0j � `0j)�jg ! 0 8j 2 Jt� as s!1; s 2 S2. By the argument
for Case (i), Equation (18) holds true, and this completes the proof. E

4. Illustrative example

Consider the following example adapted from the small, yet notoriously challeng-
ing, bilinear programming problem given in Al-Khayyal and Falk (1983).

Minimizef�x1 + x1x
0:5
2 � x2 : �6x1 + 8x2 � 3; 3x1 � x2 � 3;

(0; 0) � (x1; x2) � (1:5; 1:5)g:

Denoting any bounding intervals on the variables x1 and x2 by [`i; ui], for i = 1; 2;
respectively, we have from (4) and (6) that

x0:5
2 � `0:5

2 + (x2 � `2)(u
0:5
2 � `0:5

2 )=(u2 � `2):

Hence, defining 
 as in (1c), we have from (7) and (8) that the approximating
polynomial program PPR(
) defined in (9) is given as follows.

PPR(
): Minimizef(�� 1)x1 + �x1x2 � x2 : �6x1 + 8x2 � 3;
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Figure 2. Branch-and-Bound Tree for Branching Rule (C).

3x1 � x2 � 3; x 2 
g;

where � � [u2`
0:5
2 � `2u

0:5
2 ]=(u2 � `2) and � = [u0:5

2 � `0:5
2 ]=(u2 � `2). The degree

of this polynomial program is � = 2. Hence, at Step II of the Reformulation
Phase of RLT, we generate all pairwise products (21 in number) of the constraint
and bound factors (3 + 6x1 � 8x2) � 0; (3 � 3x1 + x2) � 0, (x1 � `1) � 0,
(u1 � x1) � 0, (x2 � `2) � 0, and (u2 � x2) � 0, including self-products. These
product constraints are linearized by substituting

X11 = x2
1;X22 = x2

2; and X12 = x1x2:

For example, the product constraint (3 + 6x1 � 8x2)(3� 3x1 + x2) � 0 yields

9 + 9x1 � 21x2 � 18X11 � 8X22 + 30X12 � 0:

The RLT lower bounding linear program LP(
) is then to minimize f(�� 1)x1 +
�X12�x2g subject to the 21 RLT linearized product constraints, where the original
as well as the bounding restrictions on all the variables are easily verified to be
implied by these constraints.

Using Branching Rule C, the problem is solved to optimality after enumerating
7 nodes as shown in Figure 2. Note that in this example, the most (actually, only)
discrepant term via (14) is the nonlinear term that appears in the objective function,
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and the interval partitioning is performed at the linear programming solution value
as determined via (15a).

As a point of interest, using either the bisection Rule (A) or the Branching Rule
(B), the branch-and-bound algorithm enumerated 9 nodes in order to solve the
problem.

5. Summary and extensions

In this paper, we have presented a global optimization approach for solving polyno-
mial programming problems that may, in general, have rational exponents, mixed-
sign coefficients, and permit variables to take on zero values. As discussed, such
problems arise in various location-allocation, chemical process and engineering
design, and economic equilibrium problems. For such problems, we have devel-
oped a lower bounding scheme that employs two levels of approximation – one
that constructs a lower bounding polynomial program having integral exponents,
and a second based on the RLT approach. This lower bound is embedded with-
in a branch-and-bound algorithm, and three particular partitioning strategies are
developed, each of which simultaneously drives the error in these two levels of
approximation to zero, hence inducing convergence to a global optimum. While
the proposed method remains to be computationally refined and tested (several
enhancements are recommended below), a prototype of this basic approach has
been specialized and applied to the pipe network design problem in Sherali and
Smith (1995). Using this methodology, a standard test case from the literature,
and several of its variants, have been solved for the first time to provable global
optimality.

As alluded above, there are several extensions that can be explored to enhance
the proposed basic algorithm. First, several other classes of constraints could be
developed to further tighten the lower bounding linear program. These can include
multiple polynomial approximations for the objective function (and perhaps other
key constraints), alternative bounding polynomial functions, as well as various
other valid RLT product constraints. Second, a Lagrangian dual approach could be
used to cope with and to exploit the size and structure of the relaxations generated.
Third, several “preprocessing” or “bound-reduction” strategies can be devised to
further tighten the relaxation as in, for example, Shectman and Sahinidis (1995)
and Sherali and Tuncbilek (1995). Fourth, as illustrated by our analysis, many
alternative branching strategies exist that admit convergence to a global optimum
and these need to be investigated and computationally tested. Fifth, suitable heuris-
tics could be designed to determine good quality feasible solutions based on the
LP relaxations being solved, in order to enhance the branch-and-bound algorithm,
as well as to provide a practical tool for deriving useful solutions to relatively
large-scale problems. Finally, as noted by Hansen and Jaumard (1992), polynomial
programs can be used to approximate various problems that include trigonometric
and transcendental functions. Hence, our methodology can be potentially extend-
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ed to handle such problems as well. The use of such approximations can also
be coordinated with various transformations, such as the exponential/logarithmic
transformation used for geometric programs. These investigations are being pur-
sued in ongoing research and further results and computational experience will be
forthcoming.

Acknowledgements

This material is based upon research supported by the National Science Foundation
under Grant Number DMI-9521398, and the Air Force Office of Scientific Research
under Grant Number F49620-96-1-0274.

References

Al-Khayyal, F.A. and J.E. Falk (1983), Jointly constrained biconvex programming, Math. of Oper.
Res. 8, 273–283.

Al-Khayyal, F.A., C. Larson and T. Van Voorhis (1994), A relaxation method for nonconvex quadrat-
ically constrained quadratic programs.

Brimberg, J. and R.F. Love (1991), Estimating travel distances by the weighted `p norm, Naval
Research Logistics 38 241–259.

Cole, F., W. Gochet and Y. Smeers (1985), A comparison between a primal and a dual cutting plane
algorithm for posynomial geometric programming problems, Journal of Optimization Theory
and Applications 47, 159–180.

Cole, F., W. Gochet, F. Van Assche, J. Ecker and Y. Smeers (1980), Reversed geometric programming:
A branch-and-bound method involving linear subproblems, European Journal of Operational
Research 5, 26–35.

Dembo, R.S. (1976), A set of geometric programming test problems and their solutions, Mathematical
Programming 10, 192–213.

Dembo, R.S. (1978), Current state of the art of algorithms and computer software for geometric
programming, Journal of Optimization theory and Applications 26, 149–183.

Duffin, R.J., E.L. Peterson and C. Zener (1967), Geometric Programming. John Wiley & Sons, New
York.

Floudas, C.A. and P.M. Pardalos (1990), A collection of test problems for constrained global optimiza-
tion algorithms, Lecture Notes in Computer Science, Vol. 455, (eds. G Goos and J. Hartmanis).
Springer Verlag, Berlin.

Floudas, C.A. and V. Visweswaran (1995), Quadratic optimization, in Handbook of Global Optimiza-
tion, Nonconvex Optimization and its Applications (eds. R. Horst and P.M. Pardalos). Kluwer
Academic Publishers, 217–270.

Floudas, C.A. and V. Visweswaran (1990), A global optimization algorithm (GOP) for certain classes
of nonconvex NLP’s I: Theory, Computers and Chemical Engineering 14, 1397–1417.

Hansen, P., and B. Jaumard (1992), Reduction of indefinite quadratic programs to bilinear programs,
Journal of Global Optimization 2(1), 41–60.

Hansen, P., B. Jaumard and J. Xiong (1993), Decomposition and interval arithmetic applied to global
minimization of polynomial and rational functions, Journal of Global Optimization 3, 421–437.

Horst, R. and H. Tuy (1993), Global Optimization: Deterministic Approaches, 2nd ed. Springer
Verlag, Berlin.

Kortanek, K.L., X. Xu and Y. Ye (1995), An infeasible interior-point algorithm for solving primal
and dual geometric programs. Manuscript, Department of Management Science, The University
of Iowa, Iowa City, IA 52242.

Kostreva, M.M. and L.A. Kinard (1991), A differentiable homotopy approach for solving polynomial
optimization problems and noncooperative games, Computers Math. Applic. 21(6/7), 135–143.

jogo389.tex; 5/05/1998; 14:29; v.7; p.16



NONCONVEX POLYNOMIAL PROGRAMMING PROBLEMS HAVING RATIONAL EXPONENTS 283

Lasdon, L.S., A.D. Waren, S. Sarkar and F. Palacios, (1979), Solving the pooling problem using
generalized reduced gradient and successive linear programming algorithms, SIGMAP Bull. 77,
9–15.

Maranas, C.D. and C.A. Floudas (1994), Global optimization in generalized geometric programming.
Working Paper, Department of Chemical Engineering, Princeton University, Princeton, NJ.

Passy, U. (1978), Global solutions of mathematical programs with intrinsically concave functions,
Journal of Optimization Theory and Applications 26, 97–115.

Peterson, E.L. (1976), Geometric programming, SIAM Review 18, 1–15.
Rickaert, M.J. and X.M. Martens (1978), Comparison of generalized geometric programming algo-

rithms, Journal of Optimization Theory and Applications 26, 205–242.
Shectman, H.P. and N.V. Sahindis (1994), A finite algorithm for global minimization of separable

concave programs. Technical Report, Department of Mechanical and Industrial Engineering,
University of Illinois, Urbana-Champagne, IL.

Sherali, H.D., A. Alameddine and T.S. Glickman (1994/95), Biconvex models and algorithms for risk
management problems, American Journal of Mathematical and Management Sciences 14(2&3),
197–228.

Sherali, H.D. and E.P. Smith (1995), A global optimization approach to a water distribution network
design problem. Research Report #HDS95-6, Department of Industrial and Systems Engineering,
Virginia Polytechnic Institute and State University, Blacksburg, VA (to appear in the Journal of
Global Optimization).

Sherali, H.D. and C.H. Tuncbilek (1992), A global optimization algorithm for polynomial program-
ming problems using a reformulation-linearization technique, Journal of Global Optimization 2,
101–112.

Sherali, H.D. and C.H. Tuncbilek (1995), A reformulation-convexification approach for solving
nonconvex quadratic programming problems, Journal of Global Optimization 7, 1–31.

Sherali, H.D. and C.H. Tuncbilek (1997), Comparison of two Reformulation-Linearization Technique
based linear programming relaxations for polynomial programming problems, Journal of Global
Optimization 10, 381–390.

Sherali, H.D. and C.H. Tuncbilek (1996), New reformulation-linearization/convexification relax-
ations for univariate and multivariate polynomial programming problems, under revision for
Operations Research Letters.

Shor, N.Z. (1990), Dual quadratic estimates in polynomial and boolean programming, Annals of
Operations Research 25, 163–168.

Watson, L.T., S.C. Billups and A.P. Morgan (1987), Algorithm 652 HOMPACK: A suite of codes for
globally convergent homotopy algorithms, ACM Transactions on Mathematical Software 13(3),
281–310.

jogo389.tex; 5/05/1998; 14:29; v.7; p.17


